Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- Mahabir Bhandari
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Aaron
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Callie Goetz
- Charles D Ottinger
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Govindarajan Muralidharan
- Keith Carver
- Matt Kurley III
- Meghan Lamm
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ryan Heldt
- Sergey Smolentsev
- Shajjad Chowdhury
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Weicheng Zhong
- Wei Tang
- Xiang Chen

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.