Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Halil Tekinalp
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Singanallur Venkatakrishnan
- Steven Guzorek
- Uday Vaidya
- Venugopal K Varma
- Alex Roschli
- Amir K Ziabari
- Beth L Armstrong
- Dan Coughlin
- Diana E Hun
- Georges Chahine
- Mahabir Bhandari
- Matt Korey
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Vipin Kumar
- Adam Aaron
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Ben Lamm
- Brian Post
- Bryan Maldonado Puente
- Cait Clarkson
- Charles D Ottinger
- Corey Cooke
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Mark M Root
- Marm Dixit
- Michael Kirka
- Nadim Hmeidat
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peter Wang
- Rose Montgomery
- Ryan Kerekes
- Sally Ghanem
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Sergey Smolentsev
- Shajjad Chowdhury
- Steve Bullock
- Steven J Zinkle
- Thomas R Muth
- Tolga Aytug
- Tyler Smith
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yutai Kato

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.