Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Amit K Naskar
- Venugopal K Varma
- Jaswinder Sharma
- Logan Kearney
- Mahabir Bhandari
- Michael Toomey
- Mike Zach
- Nihal Kanbargi
- Adam Aaron
- Andrew F May
- Arit Das
- Ben Garrison
- Benjamin L Doughty
- Brad Johnson
- Bruce Moyer
- Charles D Ottinger
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Govindarajan Muralidharan
- Holly Humphrey
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Robert E Norris Jr
- Rose Montgomery
- Sandra Davern
- Santanu Roy
- Sergey Smolentsev
- Steven J Zinkle
- Sumit Gupta
- Thomas R Muth
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Yanli Wang
- Ying Yang
- Yutai Kato

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.