Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- Blane Fillingim
- Brian Post
- Hongbin Sun
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Prashant Jain
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Adam Aaron
- Charles D Ottinger
- Govindarajan Muralidharan
- Ian Greenquist
- Ilias Belharouak
- Nate See
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ramanan Sankaran
- Rose Montgomery
- Ruhul Amin
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Vimal Ramanuj
- Vishaldeep Sharma
- Vittorio Badalassi
- Wenjun Ge
- Yanli Wang
- Ying Yang
- Yutai Kato

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.