Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ying Yang
- Venugopal K Varma
- Ali Abouimrane
- Alice Perrin
- Mahabir Bhandari
- Ruhul Amin
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alex Plotkowski
- Amit Shyam
- Bruce A Pint
- Charles D Ottinger
- Christopher Ledford
- Costas Tsouris
- David L Wood III
- David S Parker
- Georgios Polyzos
- Gerry Knapp
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- James A Haynes
- Jaswinder Sharma
- Jong K Keum
- Junbin Choi
- Lu Yu
- Marm Dixit
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Radu Custelcean
- Rose Montgomery
- Ryan Dehoff
- Sergey Smolentsev
- Sumit Bahl
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Zhijia Du

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.