Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Venugopal K Varma
- Ali Abouimrane
- Kyle Kelley
- Mahabir Bhandari
- Ruhul Amin
- Adam Aaron
- Anton Ievlev
- Arpan Biswas
- Charles D Ottinger
- David L Wood III
- Georgios Polyzos
- Gerd Duscher
- Govindarajan Muralidharan
- Hongbin Sun
- Jaswinder Sharma
- Junbin Choi
- Liam Collins
- Lu Yu
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Rose Montgomery
- Sai Mani Prudhvi Valleti
- Sergey Smolentsev
- Stephen Jesse
- Steven J Zinkle
- Sumner Harris
- Thomas R Muth
- Utkarsh Pratiush
- Yanli Wang
- Yaocai Bai
- Ying Yang
- Yutai Kato
- Zhijia Du

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.