Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Venugopal K Varma
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Kyle Kelley
- Mahabir Bhandari
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Adam Aaron
- Amit K Naskar
- Anton Ievlev
- Arpan Biswas
- Ben LaRiviere
- Beth L Armstrong
- Charles D Ottinger
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gerd Duscher
- Govindarajan Muralidharan
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Lu Yu
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Rose Montgomery
- Sai Mani Prudhvi Valleti
- Sergey Smolentsev
- Stephen Jesse
- Steven J Zinkle
- Sumner Harris
- Thomas R Muth
- Todd Toops
- Utkarsh Pratiush
- Yanli Wang
- Yaocai Bai
- Ying Yang
- Yutai Kato
- Zhijia Du

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.