Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Srikanth Yoginath
- Venugopal K Varma
- James A Haynes
- James J Nutaro
- Mahabir Bhandari
- Peeyush Nandwana
- Pratishtha Shukla
- Rangasayee Kannan
- Ryan Dehoff
- Sudip Seal
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Adam Stevens
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Brian Post
- Bryan Lim
- Charles D Ottinger
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Nance Ericson
- Nicholas Richter
- Pablo Moriano Salazar
- Peter Wang
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergey Smolentsev
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Thomas R Muth
- Tomas Grejtak
- Varisara Tansakul
- William Peter
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.