Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- Alexey Serov
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Xiang Lyu
- Yousub Lee
- Adam Aaron
- Alexander I Wiechert
- Amit K Naskar
- Beth L Armstrong
- Charles D Ottinger
- Costas Tsouris
- Debangshu Mukherjee
- Gabriel Veith
- Georgios Polyzos
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Md Inzamam Ul Haque
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Ritu Sahore
- Rose Montgomery
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Todd Toops
- Vimal Ramanuj
- Wenjun Ge
- Yanli Wang
- Ying Yang
- Yutai Kato

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.