Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Venugopal K Varma
- James A Haynes
- Mahabir Bhandari
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Alice Perrin
- Andres Marquez Rossy
- Charles D Ottinger
- Diana E Hun
- Easwaran Krishnan
- Gerry Knapp
- Govindarajan Muralidharan
- James Manley
- Jamieson Brechtl
- Joe Rendall
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mengjia Tang
- Muneeshwaran Murugan
- Nicholas Richter
- Peeyush Nandwana
- Rose Montgomery
- Ryan Dehoff
- Sergey Smolentsev
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tomonori Saito
- Yanli Wang
- Yutai Kato
- Zoriana Demchuk

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.