Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Venugopal K Varma
- James A Haynes
- Mahabir Bhandari
- Ryan Dehoff
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- Andres Marquez Rossy
- Benjamin Manard
- Brian Post
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Costas Tsouris
- Dean T Pierce
- Derek Dwyer
- Gerry Knapp
- Gordon Robertson
- Govindarajan Muralidharan
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- Jonathan Willocks
- Jovid Rakhmonov
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Nicholas Richter
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Richard L. Reed
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergey Smolentsev
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Thomas R Muth
- Vandana Rallabandi
- William Peter
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.