Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Adam Aaron
- Alexander I Wiechert
- Benjamin Manard
- Charles D Ottinger
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Govindarajan Muralidharan
- Joanna Mcfarlane
- Jonathan Willocks
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Paula Cable-Dunlap
- Ramanan Sankaran
- Richard L. Reed
- Rose Montgomery
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Vandana Rallabandi
- Vimal Ramanuj
- Wenjun Ge
- Yanli Wang
- Ying Yang
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.