Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Rafal Wojda
- Hongbin Sun
- Prasad Kandula
- Vandana Rallabandi
- Venugopal K Varma
- Eddie Lopez Honorato
- Mahabir Bhandari
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Adam Aaron
- Alexander Enders
- Alexander I Wiechert
- Alex Plotkowski
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Christopher S Blessinger
- Costas Tsouris
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Marcio Magri Kimpara
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Mostak Mohammad
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Omer Onar
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Praveen Kumar
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Sergey Smolentsev
- Shajjad Chowdhury
- Steven J Zinkle
- Subho Mukherjee
- Suman Debnath
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vishaldeep Sharma
- Vittorio Badalassi
- Yanli Wang
- Ying Yang
- Yutai Kato

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.

Current fuel used in nuclear light water reactors that generate energy for the grid use a solid form of uranium that is heated and processed to form pellets.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.

The invention ensures post-validation calibrated physics system predictions remain within predetermined model validation domain boundaries.