Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Venugopal K Varma
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Costas Tsouris
- Edgar Lara-Curzio
- Hongbin Sun
- Mahabir Bhandari
- Prashant Jain
- Rishi Pillai
- Ryan Dehoff
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Akash Jag Prasad
- Alexander I Wiechert
- Alice Perrin
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Calen Kimmell
- Callie Goetz
- Canhai Lai
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Hobbs
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Eddie Lopez Honorato
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Sergey Smolentsev
- Shajjad Chowdhury
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zackary Snow
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.