Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Costas Tsouris
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Alex Plotkowski
- Amit Shyam
- Gyoung Gug Jang
- Srikanth Yoginath
- Venugopal K Varma
- Alexander I Wiechert
- Anees Alnajjar
- Gs Jung
- Hongbin Sun
- James A Haynes
- James J Nutaro
- Mahabir Bhandari
- Michael Cordon
- Prashant Jain
- Pratishtha Shukla
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Ajibola Lawal
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Canhai Lai
- Charles D Ottinger
- Charles F Weber
- Christopher Hobbs
- Craig A Bridges
- Dhruba Deka
- Eddie Lopez Honorato
- Fred List III
- Georgios Polyzos
- Gerry Knapp
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Parks II
- Jaswinder Sharma
- Jeffrey Einkauf
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Jovid Rakhmonov
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Mariam Kiran
- Matt Kurley III
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nicholas Richter
- Nithin Panicker
- Oscar Martinez
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Sergey Smolentsev
- Sheng Dai
- Sreshtha Sinha Majumdar
- Steven J Zinkle
- Sunyong Kwon
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Yanli Wang
- Yeonshil Park
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).