Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Andrzej Nycz
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Alex Walters
- Michael Kirka
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Venugopal K Varma
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brian Post
- Clay Leach
- Costas Tsouris
- Gurneesh Jatana
- Hongbin Sun
- Jonathan Willocks
- Joshua Vaughan
- Luke Meyer
- Mahabir Bhandari
- Peeyush Nandwana
- Philip Bingham
- Prashant Jain
- Todd Toops
- Udaya C Kalluri
- William Carter
- Yeonshil Park
- Ying Yang
- Adam Aaron
- Akash Jag Prasad
- Alexander I Wiechert
- Alexey Serov
- Alice Perrin
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Calen Kimmell
- Callie Goetz
- Cameron Adkins
- Canhai Lai
- Charles D Ottinger
- Charles F Weber
- Chelo Chavez
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Chris Tyler
- Dhruba Deka
- Diana E Hun
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gina Accawi
- Gordon Robertson
- Govindarajan Muralidharan
- Haiying Chen
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Joseph Olatt
- Keith Carver
- Kitty K Mccracken
- Kunal Mondal
- Liam White
- Mahim Mathur
- Mark M Root
- Matt Kurley III
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Obaid Rahman
- Oluwafemi Oyedeji
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Riley Wallace
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Sarah Graham
- Sergey Smolentsev
- Soydan Ozcan
- Sreshtha Sinha Majumdar
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Tyler Smith
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- William Peter
- William P Partridge Jr
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.