Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Peeyush Nandwana
- Venugopal K Varma
- Amit Shyam
- Blane Fillingim
- Brian Post
- Hongbin Sun
- Lauren Heinrich
- Mahabir Bhandari
- Prashant Jain
- Rangasayee Kannan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Aaron
- Alexander I Wiechert
- Alex Plotkowski
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Bruce A Pint
- Bryan Lim
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Costas Tsouris
- Diana E Hun
- Easwaran Krishnan
- Eddie Lopez Honorato
- Fred List III
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Manley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- Joe Rendall
- Jonathan Willocks
- Joseph Olatt
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mengjia Tang
- Mike Zach
- Mingyan Li
- Muneeshwaran Murugan
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Sergey Smolentsev
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tomas Grejtak
- Tomonori Saito
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang
- Zoriana Demchuk

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.