Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Ilias Belharouak
- Rafal Wojda
- Isabelle Snyder
- Michael Kirka
- Ryan Dehoff
- Alexey Serov
- Ali Riza Ekti
- Prasad Kandula
- Rangasayee Kannan
- Subho Mukherjee
- Venkatakrishnan Singanallur Vaidyanathan
- Xiang Lyu
- Aaron Wilson
- Adam Siekmann
- Adam Stevens
- Ali Abouimrane
- Amir K Ziabari
- Beth L Armstrong
- Christopher Ledford
- Diana E Hun
- Elizabeth Piersall
- Emilio Piesciorovsky
- Jaswinder Sharma
- Marm Dixit
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Ozgur Alaca
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Raymond Borges Hink
- Ruhul Amin
- Sam Hollifield
- Stephen M Killough
- Suman Debnath
- Vandana Rallabandi
- Vincent Paquit
- Vivek Sujan
- Yaosuo Xue
- Aaron Werth
- Alex Plotkowski
- Alice Perrin
- Amit K Naskar
- Annetta Burger
- Ben LaRiviere
- Brian Post
- Bryan Maldonado Puente
- Burak Ozpineci
- Carter Christopher
- Chance C Brown
- Christopher Fancher
- Corey Cooke
- Corson Cramer
- David L Wood III
- Debraj De
- Emrullah Aydin
- Ethan Self
- Eve Tsybina
- Fei Wang
- Fred List III
- Gabriel Veith
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gina Accawi
- Guang Yang
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- James Gaboardi
- James Klett
- James Szybist
- Jason Jarnagin
- Jesse McGaha
- Jin Dong
- John Holliman II
- Jonathan Willocks
- Joseph Olatt
- Junbin Choi
- Keith Carver
- Kevin Spakes
- Kevin Sparks
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Liz McBride
- Logan Kearney
- Lu Yu
- Mahim Mathur
- Marcio Magri Kimpara
- Mark M Root
- Mark Provo II
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mingyan Li
- Nance Ericson
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Paul Groth
- Peter L Fuhr
- Peter Wang
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Kumar
- Richard Howard
- Ritu Sahore
- Rob Root
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Steve Bullock
- Sudarsanam Babu
- Sunil Subedi
- Thomas Butcher
- Todd Thomas
- Todd Toops
- Trevor Aguirre
- Viswadeep Lebakula
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Yaocai Bai
- Yarom Polsky
- Ying Yang
- Yonghao Gui
- Yukinori Yamamoto
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.