Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ilias Belharouak
- Rafal Wojda
- Isabelle Snyder
- Alexey Serov
- Ali Riza Ekti
- Prasad Kandula
- Sam Hollifield
- Subho Mukherjee
- Venkatakrishnan Singanallur Vaidyanathan
- Xiang Lyu
- Aaron Wilson
- Adam Siekmann
- Ali Abouimrane
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Elizabeth Piersall
- Emilio Piesciorovsky
- Jaswinder Sharma
- Junghoon Chae
- Marm Dixit
- Mingyan Li
- Mostak Mohammad
- Nance Ericson
- Nils Stenvig
- Omer Onar
- Ozgur Alaca
- Philip Bingham
- Philip Boudreaux
- Raymond Borges Hink
- Ruhul Amin
- Ryan Dehoff
- Stephen M Killough
- Suman Debnath
- Travis Humble
- Vandana Rallabandi
- Vincent Paquit
- Vivek Sujan
- Yaosuo Xue
- Aaron Werth
- Alex Plotkowski
- Ali Passian
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brian Weber
- Bryan Maldonado Puente
- Burak Ozpineci
- Christopher Fancher
- Corey Cooke
- David L Wood III
- Emrullah Aydin
- Ethan Self
- Eve Tsybina
- Fei Wang
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gina Accawi
- Guang Yang
- Gurneesh Jatana
- Harper Jordan
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- James Szybist
- Jason Jarnagin
- Jin Dong
- Joel Asiamah
- Joel Dawson
- John Holliman II
- Jonathan Willocks
- Joseph Olatt
- Junbin Choi
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Lu Yu
- Mahim Mathur
- Marcio Magri Kimpara
- Mark M Root
- Mark Provo II
- Mary A Adkisson
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Paul Groth
- Peter L Fuhr
- Peter Wang
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Kumar
- Ritu Sahore
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Srikanth Yoginath
- Sunil Subedi
- Todd Toops
- T Oesch
- Varisara Tansakul
- Viswadeep Lebakula
- Yaocai Bai
- Yarom Polsky
- Yonghao Gui
- Zhijia Du

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.

This technology creates a light and metalless current collector for battery application. Cathodes coated on this new current collector demonstrated similar contact resistance, lower charge transfer resistance and similar or high rate performance.