Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Soydan Ozcan
- Ahmed Hassen
- Meghan Lamm
- Peter Wang
- Vlastimil Kunc
- Halil Tekinalp
- Steven Guzorek
- Umesh N MARATHE
- Alex Roschli
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Katie Copenhaver
- Sudarsanam Babu
- Thomas Feldhausen
- Uday Vaidya
- Adam Willoughby
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- J.R. R Matheson
- Jesse Heineman
- Joshua Vaughan
- Lauren Heinrich
- Matt Korey
- Peeyush Nandwana
- Pum Kim
- Rishi Pillai
- Vipin Kumar
- Yousub Lee
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Amit Shyam
- Ben Lamm
- Brandon Johnston
- Brian Gibson
- Bruce A Pint
- Cait Clarkson
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jiheon Jun
- Jim Tobin
- John Lindahl
- John Potter
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam White
- Luke Meyer
- Marie Romedenne
- Marm Dixit
- Michael Borish
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Priyanshi Agrawal
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Scott Smith
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- William Carter
- William Peter
- Xianhui Zhao
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.