Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Willoughby
- Ahmed Hassen
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Rishi Pillai
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Brandon Johnston
- Brian Gibson
- Bruce A Pint
- Callie Goetz
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Christopher Hobbs
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Eddie Lopez Honorato
- Fred List III
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- John Lindahl
- John Potter
- Keith Carver
- Liam White
- Luke Meyer
- Marie Romedenne
- Matt Kurley III
- Michael Borish
- Priyanshi Agrawal
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Ryan Heldt
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Thomas Butcher
- Tyler Gerczak
- Vlastimil Kunc
- William Carter
- William Peter
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.