Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Brian Post
- Sheng Dai
- Parans Paranthaman
- Peter Wang
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Craig A Bridges
- Kyle Kelley
- Rama K Vasudevan
- Shannon M Mahurin
- Sudarsanam Babu
- Thomas Feldhausen
- Edgar Lara-Curzio
- Ilja Popovs
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Li-Qi Qiu
- Peeyush Nandwana
- Saurabh Prakash Pethe
- Sergei V Kalinin
- Stephen Jesse
- Tolga Aytug
- Uday Vaidya
- Vlastimil Kunc
- Yousub Lee
- Adam Stevens
- Alexei P Sokolov
- Alex Roschli
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Gibson
- Bruce Moyer
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Isha Bhandari
- Jamieson Brechtl
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- John Lindahl
- John Potter
- Kai Li
- Kashif Nawaz
- Kaustubh Mungale
- Kevin M Roccapriore
- Liam Collins
- Liam White
- Luke Meyer
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Michael Borish
- Nageswara Rao
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Phillip Halstenberg
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Santa Jansone-Popova
- Sarah Graham
- Scott Smith
- Shajjad Chowdhury
- Steven Guzorek
- Steven Randolph
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- William Carter
- William Peter
- Yongtao Liu
- Yukinori Yamamoto

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.