Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Corson Cramer
- Steve Bullock
- Peter Wang
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Greg Larsen
- James Klett
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Venugopal K Varma
- Vlastimil Kunc
- Craig Blue
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Steven Guzorek
- Yousub Lee
- Adam Aaron
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Beth L Armstrong
- Brian Gibson
- Cameron Adkins
- Charles D Ottinger
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Daniel Rasmussen
- David J Mitchell
- David Olvera Trejo
- Dustin Gilmer
- Gordon Robertson
- Govindarajan Muralidharan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jordan Wright
- Liam White
- Luke Meyer
- Michael Borish
- Michael Kirka
- Nadim Hmeidat
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sana Elyas
- Sarah Graham
- Scott Smith
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Tomonori Saito
- Tony Beard
- William Carter
- William Peter
- Yanli Wang
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.