Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Venugopal K Varma
- Ying Yang
- Adam Willoughby
- Ahmed Hassen
- Bruce A Pint
- Edgar Lara-Curzio
- Hongbin Sun
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Prashant Jain
- Rishi Pillai
- Ryan Dehoff
- Steven J Zinkle
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Aaron
- Adam Stevens
- Alexander I Wiechert
- Alex Roschli
- Alice Perrin
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Brian Gibson
- Callie Goetz
- Cameron Adkins
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Eddie Lopez Honorato
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Michael Borish
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Sergey Smolentsev
- Shajjad Chowdhury
- Steven Guzorek
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Carter
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).