Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Ilias Belharouak
- Peter Wang
- Rafal Wojda
- Alexey Serov
- Ali Riza Ekti
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Isabelle Snyder
- Jaswinder Sharma
- Prasad Kandula
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Xiang Lyu
- Aaron Wilson
- Ahmed Hassen
- Ali Abouimrane
- Amir K Ziabari
- Christopher Fancher
- Diana E Hun
- Elizabeth Piersall
- Emilio Piesciorovsky
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Mostak Mohammad
- Nihal Kanbargi
- Nils Stenvig
- Omer Onar
- Ozgur Alaca
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Raymond Borges Hink
- Ruhul Amin
- Stephen M Killough
- Subho Mukherjee
- Suman Debnath
- Vandana Rallabandi
- Vincent Paquit
- Yaosuo Xue
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Ben LaRiviere
- Beth L Armstrong
- Brian Gibson
- Bryan Maldonado Puente
- Burak Ozpineci
- Cameron Adkins
- Christopher Bowland
- Chris Tyler
- Corey Cooke
- Craig Blue
- David L Wood III
- David Olvera Trejo
- Edgar Lara-Curzio
- Emrullah Aydin
- Ethan Self
- Eve Tsybina
- Fei Wang
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gina Accawi
- Gordon Robertson
- Guang Yang
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- Isha Bhandari
- James Szybist
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jin Dong
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Junbin Choi
- Khryslyn G Araño
- Kunal Mondal
- Liam White
- Luke Meyer
- Lu Yu
- Mahim Mathur
- Marcio Magri Kimpara
- Mark M Root
- Meghan Lamm
- Michael Borish
- Michael Kirka
- Michelle Lehmann
- Mingyan Li
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Paul Groth
- Peter L Fuhr
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Kumar
- Rangasayee Kannan
- Ritin Mathews
- Ritu Sahore
- Robert E Norris Jr
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Santanu Roy
- Sarah Graham
- Scott Smith
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Steven Guzorek
- Sumit Gupta
- Sunil Subedi
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Viswadeep Lebakula
- Vivek Sujan
- Vlastimil Kunc
- William Carter
- William Peter
- Yaocai Bai
- Yarom Polsky
- Yonghao Gui
- Yukinori Yamamoto
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.