Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Soydan Ozcan
- Ahmed Hassen
- Ali Passian
- Meghan Lamm
- Peter Wang
- Vlastimil Kunc
- Halil Tekinalp
- Steven Guzorek
- Umesh N MARATHE
- Alex Roschli
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Katie Copenhaver
- Nicholas Peters
- Sudarsanam Babu
- Thomas Feldhausen
- Uday Vaidya
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Hsuan-Hao Lu
- J.R. R Matheson
- Jesse Heineman
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Matt Korey
- Muneer Alshowkan
- Peeyush Nandwana
- Pum Kim
- Vipin Kumar
- Yousub Lee
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Amit Shyam
- Anees Alnajjar
- Ben Lamm
- Brian Gibson
- Brian Williams
- Cait Clarkson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jim Tobin
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam White
- Luke Meyer
- Mariam Kiran
- Marm Dixit
- Michael Borish
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Scott Smith
- Segun Isaac Talabi
- Shajjad Chowdhury
- Srikanth Yoginath
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Varisara Tansakul
- William Carter
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.