Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Michael Kirka
- Peeyush Nandwana
- Ryan Dehoff
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Christopher Ledford
- Chris Tyler
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Christopher Fancher
- Clay Leach
- Corson Cramer
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Fred List III
- Gordon Robertson
- Isha Bhandari
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Trevor Aguirre
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Carter
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.