Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Amit Shyam
- Alex Plotkowski
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Ali Riza Ekti
- J.R. R Matheson
- James A Haynes
- Joshua Vaughan
- Lauren Heinrich
- Raymond Borges Hink
- Ryan Dehoff
- Sumit Bahl
- Yousub Lee
- Aaron Werth
- Aaron Wilson
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Brian Gibson
- Burak Ozpineci
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Gerry Knapp
- Gordon Robertson
- Isaac Sikkema
- Isabelle Snyder
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Joseph Olatt
- Jovid Rakhmonov
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Michael Borish
- Mingyan Li
- Mostak Mohammad
- Nicholas Richter
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Sunyong Kwon
- Vlastimil Kunc
- William Carter
- William Peter
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.