Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Peter Wang
- Andrzej Nycz
- Vlastimil Kunc
- Blane Fillingim
- Chris Masuo
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Steven Guzorek
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Alexey Serov
- Beth L Armstrong
- Craig Blue
- J.R. R Matheson
- Jaswinder Sharma
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Xiang Lyu
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit K Naskar
- Amit Shyam
- Brian Gibson
- Brittany Rodriguez
- Cameron Adkins
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- David Olvera Trejo
- Dustin Gilmer
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- Isha Bhandari
- James Szybist
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Jordan Wright
- Junbin Choi
- Khryslyn G Araño
- Liam White
- Logan Kearney
- Luke Meyer
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Rangasayee Kannan
- Ritin Mathews
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Sana Elyas
- Sarah Graham
- Scott Smith
- Subhabrata Saha
- Todd Toops
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- William Carter
- William Peter
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.