Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Adam M Guss
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Alexey Serov
- J.R. R Matheson
- Jaswinder Sharma
- Josh Michener
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Xiang Lyu
- Xiaohan Yang
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Alex Walters
- Amit K Naskar
- Amit Shyam
- Austin Carroll
- Beth L Armstrong
- Brian Gibson
- Cameron Adkins
- Carrie Eckert
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Craig Blue
- David Olvera Trejo
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Gordon Robertson
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- James Szybist
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Lindahl
- John Potter
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Kyle Davis
- Liam White
- Liangyu Qian
- Logan Kearney
- Luke Meyer
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Paul Abraham
- Rangasayee Kannan
- Ritin Mathews
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Serena Chen
- Steven Guzorek
- Todd Toops
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Vlastimil Kunc
- William Carter
- William Peter
- Yang Liu
- Yukinori Yamamoto

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.