Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Radu Custelcean
- Peter Wang
- Costas Tsouris
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Gyoung Gug Jang
- Jeffrey Einkauf
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Nikki Thiele
- Peeyush Nandwana
- Santa Jansone-Popova
- Yousub Lee
- Adam Stevens
- Alexander I Wiechert
- Alex Roschli
- Amit Shyam
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Gordon Robertson
- Ilja Popovs
- Isha Bhandari
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jennifer M Pyles
- Jesse Heineman
- John Lindahl
- John Potter
- Jong K Keum
- Laetitia H Delmau
- Liam White
- Luke Meyer
- Luke Sadergaski
- Md Faizul Islam
- Michael Borish
- Mina Yoon
- Parans Paranthaman
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Scott Smith
- Steven Guzorek
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- William Carter
- William Peter
- Yingzhong Ma
- Yukinori Yamamoto

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

Direct air capture (DAC) technologies that extract carbon dioxide directly from the atmosphere are critical for mitigating effects of climate change.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Selenate and selenite oxyanions are crystallized together with sulfate anions using ligands. In this approach, we will take advantage of the tendency of these similar oxyanions to co-precipitate into crystalline solid solutions.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

An innovative rapid manufacturing method for tailored fiber preforms with controlled fiber alignment for enhanced mechanical properties.