Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chris Tyler
- J.R. R Matheson
- Jaswinder Sharma
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Ryan Dehoff
- Vincent Paquit
- Yousub Lee
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Christopher Bowland
- Christopher Fancher
- Clay Leach
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gordon Robertson
- Holly Humphrey
- Isha Bhandari
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Michael Borish
- Rangasayee Kannan
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto
- Zackary Snow

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.