Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Brian Post
- Peter Wang
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Craig Blue
- J.R. R Matheson
- Jaswinder Sharma
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Mike Zach
- Nihal Kanbargi
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Andrew F May
- Arit Das
- Ben Garrison
- Benjamin L Doughty
- Brad Johnson
- Brian Gibson
- Bruce Moyer
- Cameron Adkins
- Charlie Cook
- Christopher Bowland
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Daniel Rasmussen
- David Olvera Trejo
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gordon Robertson
- Holly Humphrey
- Hsin Wang
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Liam White
- Luke Meyer
- Luke Sadergaski
- Michael Borish
- Nedim Cinbiz
- Padhraic L Mulligan
- Rangasayee Kannan
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Santanu Roy
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Sumit Gupta
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.