Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Craig Blue
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brian Gibson
- Brian Sanders
- Bruce Moyer
- Cameron Adkins
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Daniel Rasmussen
- David Olvera Trejo
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gerald Tuskan
- Gordon Robertson
- Hsin Wang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- James Gaboardi
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- Jesse Heineman
- Jesse McGaha
- John F Cahill
- John Potter
- Josh Michener
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liam White
- Liangyu Qian
- Liz McBride
- Luke Meyer
- Luke Sadergaski
- Michael Borish
- Nedim Cinbiz
- Padhraic L Mulligan
- Paul Abraham
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Todd Thomas
- Tony Beard
- Vilmos Kertesz
- Vlastimil Kunc
- William Carter
- William Peter
- Xiaohan Yang
- Xiuling Nie
- Yang Liu
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.