Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Blane Fillingim
- Joshua Vaughan
- Luke Meyer
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Ahmed Hassen
- Brian Gibson
- Chris Tyler
- J.R. R Matheson
- Lauren Heinrich
- Peeyush Nandwana
- Udaya C Kalluri
- Yousub Lee
- Aaron Werth
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Ali Passian
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Clay Leach
- Craig Blue
- David Olvera Trejo
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jason Jarnagin
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Liam White
- Mark Provo II
- Michael Borish
- Nance Ericson
- Rangasayee Kannan
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steven Guzorek
- Varisara Tansakul
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yarom Polsky
- Yukinori Yamamoto

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.