Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Hongbin Sun
- J.R. R Matheson
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Peeyush Nandwana
- Prashant Jain
- Yousub Lee
- Adam Stevens
- Alexander I Wiechert
- Alex Roschli
- Amit Shyam
- Andrew F May
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Callie Goetz
- Cameron Adkins
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Eddie Lopez Honorato
- Fred List III
- Gerd Duscher
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Liam Collins
- Liam White
- Luke Meyer
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Kurley III
- Matt Vick
- Michael Borish
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Neus Domingo Marimon
- Nithin Panicker
- Olga S Ovchinnikova
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Stephen Jesse
- Steven Guzorek
- Sumner Harris
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Utkarsh Pratiush
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.