Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Brian Post
- Peeyush Nandwana
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Amit Shyam
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Ryan Dehoff
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Andres Marquez Rossy
- Bogdan Dryzhakov
- Brian Gibson
- Bruce A Pint
- Bryan Lim
- Cameron Adkins
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jong K Keum
- Kyle Kelley
- Liam White
- Luke Meyer
- Michael Borish
- Mina Yoon
- Radu Custelcean
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Tomas Grejtak
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Carter
- William Peter
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.