Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Brian Post
- Corson Cramer
- Steve Bullock
- Peter Wang
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Greg Larsen
- James Klett
- Kyle Kelley
- Rama K Vasudevan
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Vlastimil Kunc
- Craig Blue
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Sergei V Kalinin
- Stephen Jesse
- Steven Guzorek
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Gibson
- Cameron Adkins
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Daniel Rasmussen
- David J Mitchell
- David Olvera Trejo
- Dustin Gilmer
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Isha Bhandari
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- John Potter
- Jordan Wright
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Liam White
- Luke Meyer
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Borish
- Michael Kirka
- Nadim Hmeidat
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Sana Elyas
- Sarah Graham
- Scott Smith
- Steven Randolph
- Tomonori Saito
- Tony Beard
- William Carter
- William Peter
- Yongtao Liu
- Yukinori Yamamoto

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.