Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Rama K Vasudevan
- Andrzej Nycz
- Ritin Mathews
- Sergei V Kalinin
- Yongtao Liu
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Peeyush Nandwana
- Scott Smith
- Yousub Lee
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Craig Blue
- Emma Betters
- Gerd Duscher
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Stephen Jesse
- Steven Guzorek
- Sumner Harris
- Tony L Schmitz
- Utkarsh Pratiush
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.