Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kyle Kelley
- Rama K Vasudevan
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Scott Smith
- Sergei V Kalinin
- Stephen Jesse
- Yousub Lee
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Craig Blue
- Emma Betters
- Gordon Robertson
- Greg Corson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Isha Bhandari
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- John Lindahl
- John Potter
- Josh B Harbin
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Liam White
- Luke Meyer
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Sarah Graham
- Steven Guzorek
- Steven Randolph
- Tony L Schmitz
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Carter
- William Peter
- Yongtao Liu
- Yukinori Yamamoto

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.