Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- J.R. R Matheson
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Diana E Hun
- Easwaran Krishnan
- Gerd Duscher
- Gordon Robertson
- Isha Bhandari
- James Manley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joe Rendall
- John Lindahl
- John Potter
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Mengjia Tang
- Michael Borish
- Muneeshwaran Murugan
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Stephen Jesse
- Steven Guzorek
- Sumner Harris
- Tomonori Saito
- Utkarsh Pratiush
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto
- Zoriana Demchuk

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.