Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chad Steed
- Chris Tyler
- J.R. R Matheson
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Mingyan Li
- Peeyush Nandwana
- Ryan Dehoff
- Travis Humble
- Vincent Paquit
- Yousub Lee
- Aaron Werth
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Ali Passian
- Amit Shyam
- Brian Gibson
- Brian Weber
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Christopher Fancher
- Clay Leach
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Isaac Sikkema
- Isha Bhandari
- James Haley
- James Parks II
- Jason Jarnagin
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Liam White
- Lilian V Swann
- Luke Koch
- Luke Meyer
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Michael Borish
- Nance Ericson
- Oscar Martinez
- Rangasayee Kannan
- Raymond Borges Hink
- Ritin Mathews
- Rob Root
- Roger G Miller
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steven Guzorek
- T Oesch
- Varisara Tansakul
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Carter
- William Peter
- Yarom Polsky
- Yukinori Yamamoto
- Zackary Snow

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.