Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Bo Shen
- Craig A Bridges
- Kyle Kelley
- Praveen Cheekatamarla
- Rama K Vasudevan
- Shannon M Mahurin
- Vishaldeep Sharma
- Edgar Lara-Curzio
- Ilja Popovs
- James Manley
- Jamieson Brechtl
- Kashif Nawaz
- Kyle Gluesenkamp
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Sergei V Kalinin
- Stephen Jesse
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce Moyer
- Easwaran Krishnan
- Eric Wolfe
- Frederic Vautard
- Hongbin Sun
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jayanthi Kumar
- Jewook Park
- Joe Rendall
- Kai Li
- Kaustubh Mungale
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Muneeshwaran Murugan
- Nageswara Rao
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Phillip Halstenberg
- Saban Hus
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven Randolph
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Vlastimil Kunc
- Yifeng Hu
- Yongtao Liu

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.