Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Mostak Mohammad
- Vandana Rallabandi
- Erdem Asa
- Shajjad Chowdhury
- Vivek Sujan
- Bo Shen
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Gui-Jia Su
- James Manley
- Kyle Gluesenkamp
- Veda Prakash Galigekere
- Adam Siekmann
- Ali Riza Ekti
- Easwaran Krishnan
- Hongbin Sun
- Isabelle Snyder
- Jamieson Brechtl
- Joe Rendall
- Kashif Nawaz
- Lingxiao Xue
- Melanie Moses-DeBusk Debusk
- Muneeshwaran Murugan
- Rafal Wojda
- Yifeng Hu

Technologies are described directed to package Integration of rotor position sensor in rotary transformer.

Technologies directed to integration of an inductive position sensor in a rotary transformer are described.

Technologies directed to a direct rotor current measurement for transformer-fed wound rotor machine are described.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Technologies are described that are directed to polyphase rotary transformer for field excitation of electric machines.

Technologies directed to an LCC based induction cooktop architecture for non-ferromagnetic pan are described.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Output Current Estimation and Control in Primary Side LCC Secondary Side Series Compensated Wireless
Wireless charging of electric vehicles require the ability to control the output current in the power transfer system, but that is often not possible as the availability of signals from the secondary side to the primary side is difficult and not always feasible.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

A Family of Integrated On-board Charger for Single and Dual Motor based Electric Vehicle Power Train
The invention aims to reduce the cost, weight and volume of existing on-board electric vehicle chargers by integrating power electronic converters of the chargers with the traction inverter.

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.