Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Bo Shen
- Jaswinder Sharma
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Alexey Serov
- James Manley
- Kyle Gluesenkamp
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Xiang Lyu
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Christopher Bowland
- Easwaran Krishnan
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jamieson Brechtl
- Joe Rendall
- Jonathan Willocks
- Junbin Choi
- Kashif Nawaz
- Khryslyn G Araño
- Marm Dixit
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Michelle Lehmann
- Muneeshwaran Murugan
- Ritu Sahore
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Yifeng Hu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.