Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Zoriana Demchuk
- Andrzej Nycz
- Bryan Maldonado Puente
- Chris Masuo
- Luke Meyer
- Mahabir Bhandari
- Nolan Hayes
- Peter Wang
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- William Carter
- Achutha Tamraparni
- Adam Aaron
- Alexandre Sorokine
- Alex Walters
- Andre O Desjarlais
- Bruce Hannan
- Catalin Gainaru
- Charles D Ottinger
- Clinton Stipek
- Daniel Adams
- Gina Accawi
- Gurneesh Jatana
- Jessica Moehl
- Joshua Vaughan
- Karen Cortes Guzman
- Kuma Sumathipala
- Loren L Funk
- Mark M Root
- Mengjia Tang
- Natasha Ghezawi
- Philipe Ambrozio Dias
- Polad Shikhaliev
- Stephen M Killough
- Taylor Hauser
- Theodore Visscher
- Venkatakrishnan Singanallur Vaidyanathan
- Viswadeep Lebakula
- Vladislav N Sedov
- Yacouba Diawara
- Zhenglai Shen

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Commercial closed-cell insulation foam boards reduce their thermal resistivity by up to 30% due to gas diffusion in and out of foam cells.