Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Adam Willoughby
- Bryan Maldonado Puente
- Mahabir Bhandari
- Nolan Hayes
- Rishi Pillai
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Brandon Johnston
- Bruce A Pint
- Callie Goetz
- Catalin Gainaru
- Charles D Ottinger
- Charles Hawkins
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Gina Accawi
- Gurneesh Jatana
- Jiheon Jun
- Karen Cortes Guzman
- Keith Carver
- Kuma Sumathipala
- Marie Romedenne
- Mark M Root
- Matt Kurley III
- Mengjia Tang
- Natasha Ghezawi
- Peter Wang
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Thomas Butcher
- Tyler Gerczak
- Yong Chae Lim
- Zhenglai Shen
- Zhili Feng

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.