Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Diana E Hun
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Zhenzhen Yang
- Craig A Bridges
- Kyle Kelley
- Rama K Vasudevan
- Shannon M Mahurin
- Bryan Maldonado Puente
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Mahabir Bhandari
- Nolan Hayes
- Saurabh Prakash Pethe
- Sergei V Kalinin
- Stephen Jesse
- Tolga Aytug
- Uday Vaidya
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Ahmed Hassen
- Alexei P Sokolov
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Eric Wolfe
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jayanthi Kumar
- Jewook Park
- Kai Li
- Karen Cortes Guzman
- Kashif Nawaz
- Kaustubh Mungale
- Kevin M Roccapriore
- Kuma Sumathipala
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Mengjia Tang
- Nageswara Rao
- Natasha Ghezawi
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Phillip Halstenberg
- Saban Hus
- Santa Jansone-Popova
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Steven Randolph
- Subhamay Pramanik
- Tao Hong
- Vlastimil Kunc
- Yongtao Liu
- Zhenglai Shen

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.