Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Lawrence {Larry} M Anovitz
- Tomonori Saito
- Bryan Maldonado Puente
- Mahabir Bhandari
- Nolan Hayes
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Andrew G Stack
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Jeffrey Einkauf
- Jennifer M Pyles
- Juliane Weber
- Justin Griswold
- Karen Cortes Guzman
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Mengjia Tang
- Mike Zach
- Natasha Ghezawi
- Padhraic L Mulligan
- Peng Yang
- Peter Wang
- Sai Krishna Reddy Adapa
- Sandra Davern
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Zhenglai Shen

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.