Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Kyle Kelley
- Rama K Vasudevan
- Tomonori Saito
- Bryan Maldonado Puente
- Mahabir Bhandari
- Mike Zach
- Nolan Hayes
- Sergei V Kalinin
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Andrew F May
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Karen Cortes Guzman
- Kevin M Roccapriore
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengjia Tang
- Natasha Ghezawi
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Peter Wang
- Sandra Davern
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen Jesse
- Stephen M Killough
- Steven Randolph
- Tony Beard
- Yongtao Liu
- Zhenglai Shen

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.